www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Beschränkte Folgen|Grenzwerte
Beschränkte Folgen|Grenzwerte < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränkte Folgen|Grenzwerte: Zeigen das GW existiert
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:28 Fr 09.01.2009
Autor: MartaG

Aufgabe
Für eine Beschränkte Folge reeller Zahlen [mm] (a_n)_{n\in\IN} [/mm] definiert man deren oberen bzw. unteren Grenzwert wie folgt:

[mm] \limsup_{n\rightarrow\infty} a_n [/mm] := [mm] \limes_{n\rightarrow\infty} (\sup_{k\ge n}a_k) [/mm]


[mm] \liminf_{n\rightarrow\infty} a_n [/mm] := [mm] \limes_{n\rightarrow\infty} (\inf_{k\ge n}a_k) [/mm]
.

Zeigen Sie, dass für jede beschränkte Folge der untere Grenzwert existiert, wobei
[mm] \liminf_{n\rightarrow\infty}a_n [/mm] = [mm] \sup_{n\in\IN}(\inf_{k\ge n} a_k). [/mm]


Beweisen Sie desweiteren für zwei beschränkte folgen [mm] (a_n)_{n\in\IN} [/mm] und [mm] (b_n)_{n\in\IN} [/mm] die Abschätzung

[mm] \liminf a_n+\liminf b_n\le \liminf(a_n+b_n). [/mm]

Warum gilt im Allgemeinen nicht die Gleichheit? Beweisen Sie schließlich, dass eine Folge [mm] (a_n) [/mm] genau dann konvergiert, wenn

[mm] \limsup_{n\rightarrow\infty}a_n [/mm] = [mm] \liminf_{n\rightarrow\infty}a_n [/mm] =:A


wobei sich im Fall der Konvergenz [mm] \limes_{n\rightarrow\infty}a_n [/mm] = A ergibt.

Hey MatheRaum ;)

bei dieser Aufgabe wäre ich nicht nur für Lösungsansätze sondern auch für gesamte Lösungen dankbar. Komm mit der Aufgabe gar nicht klar.

Danke :)

Lg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beschränkte Folgen|Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:46 Fr 09.01.2009
Autor: pelzig

Poste bitte zuerst eigene Lösugsansätze.

Gruß, Robert

Bezug
                
Bezug
Beschränkte Folgen|Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:57 Fr 09.01.2009
Autor: MartaG

Würde ich ja gerne, aber wenn man keine Ahnung hat, dann ist man wohl falsch...??

Bezug
                        
Bezug
Beschränkte Folgen|Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:07 Fr 09.01.2009
Autor: reverend

Na, wenn Du diese Aufgaben lösen sollst, wirst Du doch irgendetwas zum Thema gehabt haben. Was ist ein Infimum, was ein Supremum? Versuch doch mal, wenigstens eine Teilaufgabe anzugehen und poste hier, wie weit Du kommst.

So wissen wir doch noch nicht einmal, wo es "hängt", also welchen Tipp man Dir geben könnte.

lg,
reverend

Bezug
                        
Bezug
Beschränkte Folgen|Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:09 Fr 09.01.2009
Autor: pelzig

Wenn kein Bemühen, die Aufgaben selbstständig zu lösen, erkennbar ist, bist du hier falsch. Lies dir die Forenregeln durch.

Überlege dir zuerst, was eigentlich genau zu zeigen ist. Wie sind die Objekte definiert? Welche Sätze zu dem Thema habt ihr in der VL oder in dem Buch schon gehabt? Rechne ein Beispiel. Was weißt du z.B. über monotone beschränkte Folgen? Wenn du eine konkrete Frage hast, werden die Leute hier dir sicher gerne weiterhelfen.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de